Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.944
Filtrar
1.
Clin Transl Med ; 14(4): e1648, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38602256

RESUMO

BACKGROUND: Understanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts. METHODS: To understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co-cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs). RESULTS: Abrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8-positive T-lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival. CONCLUSIONS: USP7-mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well-characterized VEGF transcription factor, HIF-1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform "immune desert" tumors into "immune responsive" tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).


Assuntos
Neoplasias , Peptidase 7 Específica de Ubiquitina , Fator A de Crescimento do Endotélio Vascular , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/farmacologia , Fibroblastos/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
2.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504533

RESUMO

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Emodina , Humanos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
3.
Arch Biochem Biophys ; 754: 109957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467357

RESUMO

OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Ratos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Zeaxantinas/farmacologia , Caspase 3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60489 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores da Angiogênese/farmacologia , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Movimento Celular
4.
Keio J Med ; 73(1): 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522916

RESUMO

Angiogenesis, the development of new blood vessels, is a fundamental physiological process. In addition, angiogenesis plays a key role in the pathogenesis of several disorders, including cancer and eye disorders such as diabetic retinopathy and age-related macular degeneration (AMD). However, identifying the regulators of angiogenesis proved challenging. Numerous factors that stimulated angiogenesis in various bioassays were identified, but their pathophysiological role remained unclear. In 1989, we reported the isolation and cloning of vascular endothelial growth factor (VEGF, VEGF-A) as an endothelial cell-specific mitogen and angiogenic factor. The tyrosine kinases Flt-1 (VEGFR-1) and KDR (VEGFR-2) were subsequently identified as VEGF receptors. Loss of a single vegfa allele results in defective vascularization and embryonic lethality in mice, emphasizing the essential role of VEGF in the development of blood vessels. Subsequently, we reported that anti-VEGF monoclonal antibodies block growth and neovascularization in tumor models. These findings paved the way for the clinical development of a humanized anti-VEGF antibody and other VEGF inhibitors for cancer therapy. To date, several VEGF inhibitors represent standard of care for colorectal cancer and other difficult to treat malignancies. VEGF is also implicated in intraocular neovascularization associated with retinal disorders as well as neovascular AMD. Our group developed a humanized anti-VEGF-A antibody fragment (ranibizumab) for the treatment of wet AMD. Ranibizumab not only maintained but also improved visual acuity and has been approved worldwide for the treatment of wet AMD and other neovascular disorders. Other VEGF inhibitors, including bevacizumab and aflibercept, have also resulted in significant clinical benefits. Today anti-VEGF drugs represent the most effective therapy for intraocular neovascularization. Current research addresses the need to reduce the frequency of intravitreal injections as well the identification of additional pro-angiogenic pathways that could result in improving therapeutic outcomes.


Assuntos
Neoplasias , Degeneração Macular Exsudativa , Animais , Camundongos , Ranibizumab/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , 60489 , Degeneração Macular Exsudativa/tratamento farmacológico , Acuidade Visual , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
5.
Front Endocrinol (Lausanne) ; 15: 1286736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455651

RESUMO

Objective: This study aimed to investigate and compare the efficacy and safety of retinal laser photocoagulation (PRP) alone, PRP with aflibercept 3+PRN, and PRP with aflibercept 5+PRN in patients with both high-risk proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME). Methods: Overall, 170 patients with high-risk PDR and DME (170 eyes from 170 patients) who visited our ophthalmology clinic from December 2018 to December 2020 were divided into the PRP (n=58), aflibercept 5+PRN with PRP (n=53), and aflibercept 3+PRN with PRP (n= 59) groups. General information, such as age, sex, and eye category, was obtained. Moreover, best-corrected visual acuity (BCVA), baseline central macular foveal thickness (CFT), microaneurysm (MA), area of neovascularization (NV), area of hard exudate (HE), and cytokine levels in atrial fluid before and after treatment, were assessed. The χ2 test was used for comparison between groups for statistical data. Analysis of variance was used for the statistical description of measurement data, independent samples were analyzed using Student's t-test, and Student-Newman-Keuls test was used for group comparisons. Differences were considered statistically significant at P < 0.05. Results: After treatment, no significant improvement in the BCVA (logMAR) of patients in the PRP group was observed. The BCVA (log MAR) decreased from 0.72 ± 0.17 and 0.74 ± 0.17 to 0.50 ± 0.13 and 0.53 ± 0.17 in PRP with aflibercept 5+PRN and PRP with aflibercept 3+PRN groups, respectively, with a statistically significant difference compared to those in the PRP group (P<0.05 in all cases). However, no statistically significant difference was observed between the combined treatment groups (P>0.05). The CFT in the PRP-only group decreased slightly from 361.80 ± 36.70 µm to 353.86 ± 40.88 µm, with no statistically significant difference (P>0.05), whereas the CFT in the aflibercept 5+PRN with PRP and aflibercept 3+PRN with PRP groups decreased from 356.57 ± 37.57 µm and 358.17 ± 44.66 µm to 284.87 ± 31.52 µm and 303.19 ± 37.00 µm, respectively, with statistically significant differences before and after treatment (P<0.05 for both groups). Statistically significant differences were observed in CFT between the three groups after treatment (P<0.05 in all cases). The number of MA (pcs) in the PRP, aflibercept 5+PRN with PRP, and aflibercept 3+PRN with PRP groups decreased from 118.34 ± 27.96, 118.60 ± 33.34, and 116.59 ± 28.95 to 92.95 ± 29.04, 44.60 ± 20.73, and 54.26 ± 25.43, respectively. The two-way comparison of the three groups revealed statistically significant differences in MA (P<0.05 in all cases). In the three groups, NV decreased from 1.00 ± 0.21 mm², 1.01 ± 0.18 mm², and 0.98 ± 0.20 mm² before treatment to 0.49 ± 0.17 mm², 0.31 ± 0.16 mm², and 0.38 ± 0.14 mm², respectively, with statistically significant differences (P<0.05 in all cases). After 12 months of treatment, 13, 18, and 18 patients had reduced HE area in the PRP-only, aflibercept 5+PRN with PRP, and aflibercept 3+PRN with PRP groups, respectively, with statistically significant differences (P<0.05 in all cases). After 12 months of treatment, vascular endothelial growth factor, monocyte chemoattractant protein-1, and glial fibrilliary acidic protein levels (pg/mL) in the aqueous humor decreased in both combined treatment groups compared with that at baseline, with statistically significant differences; however, no significant difference was observed between the two combined treatment groups (P>0.05). Conclusion: Aflibercept 5+PRN combined with PRP was safe and effective in treating patients with high-risk PDR and DME, and was more effective than PRP-only and aflibercept 3+PRN with PRP in improving CFT and MA.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Humanos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/cirurgia , Edema Macular/tratamento farmacológico , Edema Macular/cirurgia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Retina , Fotocoagulação a Laser , Neovascularização Patológica/tratamento farmacológico , Lasers , Diabetes Mellitus/tratamento farmacológico
6.
J Control Release ; 367: 572-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301926

RESUMO

The cytoskeleton facilitates tumor cells invasion into the bloodstream via vasculogenic mimicry (VM) for "attack", and protects cells against external threats through cytoskeletal remodeling and tunneling nanotubes (TNTs) for "defense". However, the existing strategies involving cytoskeleton are not sufficient to eliminate tumor metastasis due to mitochondrial energy supply, both within tumor cells and from outside microenvironment. Here, considering the close relationship between cytoskeleton and mitochondria both in location and function, we construct a nano-platform that combats the "attack" and "defense" of cytoskeleton in the cascading metastasis. The nano-platform is composed of KFCsk@LIP and KTMito@LIP for the cytoskeletal collapse and mitochondrial dysfunction. KFCsk@LIP prevents the initiation and circulation of cascading tumor metastasis, but arouses limited suppression in tumor cell proliferation. KTMito@LIP impairs mitochondria to trigger apoptosis and impede energy supply both from inside and outside, leading to an amplified effect for metastasis suppression. Further mechanisms studies reveal that the formation of VM and TNTs are seriously obstructed. Both in situ and circulating tumor cells are disabled. Subsequently, the broken metastasis cascade results in a remarkable anti-metastasis effect. Collectively, based on the nano-platform, the cytoskeletal collapse with synchronous mitochondrial dysfunction provides a potential therapeutic strategy for cascading tumor metastasis suppression.


Assuntos
Doenças Mitocondriais , Neovascularização Patológica , Humanos , Neovascularização Patológica/tratamento farmacológico , Linhagem Celular Tumoral , Citoesqueleto/patologia , Movimento Celular
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 111-117, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322531

RESUMO

Objective: To evaluate the inhibitory effect of ginsenoside Rg3 combined with 5-fluorouracil (5-FU) on tumor angiogenesis and tumor growth in colon cancer in mice. Methods: CT26 mouse model of colon cancer was established and the mice were randomly assigned to the control group, the ginsenoside Rg3 group, the 5-FU group, and the Rg3 combined with 5-FU group. The 5-FU group was injected intraperitoneally at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 10 days. Treatment for the Rg3 group was given at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 21 days via gastric gavage. The dose and the mode of treatment for the Rg3+5-FU combination group were the same as those for the 5-FU and the Rg3 group. The control group was intraperitoneally injected with 0.2 mL/d of normal saline for 10 days. The expression of vascular endothelial growth factor (VEGF) and CD31 and the microvascular density (MVD) of the tumor tissues were examined by immunohistochemistry. The blood flow signals and tumor necrosis were examined by color Doppler flow imaging (CDFI). The quality of life, survival rate, tumor volume, tumor mass, and tumor inhibition rate of the mice were monitored. Results: After 21 days of treatment, the tumor volume and the tumor mass of all treatment groups were significantly decreased compared with those the control group, with the combination treatment group exhibiting the most significant decrease. The tumor inhibition rates of the Rg3 group, the 5-FU group, and the combination group were 29.96%, 68.78%, and 73.42%, respectively. Rg3 treatment alone had inhibitory effect on tumor growth to a certain degree, while 5-FU treatment alone or 5-FU combined with Rg3 had a stronger inhibitory effect on tumor growth. The tumor inhibition rate of the combination group was higher than that of the 5-FU group, but the difference was not statistically significant (P>0.05). Color Doppler ultrasound showed that there were multiple localized and large tumor necrotic areas that were obvious and observable in the Rg3 group and the combination group, and that there were only small tumor necrotic areas in the 5-FU group and the control group. The tumor necrosis rate of the combination group was (55.63±3.12)%, which was significantly higher than those of the other groups (P<0.05). CDFI examination of the blood flow inside of the tumor of the mice showed that the blood flow signals in the combination group were mostly grade 0-Ⅰ, and that the blood flow signals in the control group were the most abundant, being mostly grade Ⅱ-Ⅲ. The abundance of the blood flow signals in the Rg3 and 5-FU groups were between those of the control group and the combination group. Compared with those of the control group, the expression levels of MVD and VEGF in the tumor tissues of the Rg3 group, the 5-FU group, and the combination group were significantly decreased, with the combination group showing the most significant decrease (P<0.05). HE staining results indicated that there was significant tumor necrosis in mice in the control group and that there were more blood vessels. In contrast, in the tumor of the Rg3 group and the 5-FU group, there were fewer blood vessels and necrotic gaps appeared within the tumors. In the combination group, the tumor tissues had the fewest blood vessels and rope-like necrosis was observed. The mice started dying on the 18th day after treatment started, and all the mice in the control group died on the 42nd day. By this time, there were 3, 5, and 7 mice still alive in the Rg3 group, the 5-FU group, and the combination group, respectively, presenting a survival rate of 30%, 50%, and 70%, respectively. All mice in all the groups died on day 60 after treatment started. Conclusion: Ginsenoside Rg3 combined with 5-FU can significantly inhibit tumor angiogenesis and tumor growth of colon cancer in mice and improve the survival and quality of life of tumor-bearing mice.


Assuntos
Neoplasias do Colo , Ginsenosídeos , Camundongos , Animais , Fluoruracila/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60489 , Qualidade de Vida , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Necrose/tratamento farmacológico , Linhagem Celular Tumoral
8.
Adv Sci (Weinh) ; 11(14): e2305856, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308197

RESUMO

Chronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin-neutralizing antibody (GCA-NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow-derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA-NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.


Assuntos
Proteínas de Ligação ao Cálcio , Diabetes Mellitus , Animais , Camundongos , 60489 , Complicações do Diabetes , Diabetes Mellitus/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Úlcera , Cicatrização/fisiologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores
9.
Int. j. morphol ; 42(1): 40-45, feb. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1528826

RESUMO

SUMMARY: Angiogenesis, a process by which new blood vessels are generated from pre-existing ones, is significantly compromised in tumor development, given that due to the nutritional need of tumor cells, pro-angiogenic signals will be generated to promote this process and thus receive the oxygen and nutrients necessary for its development, in addition to being a key escape route for tumor spread. Although there is currently an increase in the number of studies of various anti-angiogenic therapies that help reduce tumor progression, it is necessary to conduct a review of existing studies of therapeutic alternatives to demonstrate their importance.


La angiogénesis, proceso por el cual se generan nuevos vasos sanguíneos a partir de otros preexistentes, se encuentra comprometida de forma importante en el desarrollo tumoral, dado que por necesidad nutritiva de las células tumorales se generarán señales pro angiogénicas para promover este proceso y así recibir el oxígeno y los nutrientes necesarios para su desarrollo, además de ser una ruta de escape clave para la diseminación tumoral. Si bien, actualmente existe un aumento en la cantidad de estudios de diversas terapias anti angiogénicas que ayudan a reducir el avance tumoral, es necesario realizar una revisión de los estudios existentes de alternativas terapéuticas para demostrar su importancia.


Assuntos
Humanos , Inibidores da Angiogênese/uso terapêutico , Celecoxib/uso terapêutico , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase 2 , Neoplasias/patologia , Antineoplásicos/uso terapêutico
10.
Phytomedicine ; 126: 155402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350242

RESUMO

BACKGROUND: Vasculogenic mimicry (VM) is an angiogenesis-independent process that potentially contributes to the poor clinical outcome of anti-angiogenesis therapy in multiple malignant cancers, including pancreatic adenocarcinoma (PAAD). Several studies have shown that ginsenoside Rg3, a bioactive component of ginseng, holds considerable potential for cancer treatment. Our previous work has proved that Rg3 can inhibit VM formation in PAAD. However, its underlying mechanism remains unclear. PURPOSE: To explore the underlying mechanism by which Rg3 affects VM formation in PAAD. METHODS: We first investigated the effects of Rg3 on the cellular phenotypes of two PAAD cell lines (SW-1990 and PCI-35), and the expression of EMT- and stemness-related proteins. SW-1990 cells were adopted to construct xenograft models, and the anti-tumor effects of Rg3 in vivo were validated. Subsequently, we isolated the exosomes from the two PAAD cell lines with Rg3 treatment or not, and explored whether Rg3 regulated VM via PAAD cell-derived exosomes. MiRNA sequencing, clinical analysis, and rescue experiments were performed to investigate whether and which miRNA was involved. Subsequently, the target gene of miRNA was predicted using the miRDB website (https://mirdb.org/), and rescue experiments were further conducted to validate those in vitro and in vivo. RESULTS: Rg3 indeed exhibited excellent anti-tumor effects both in vitro and in vivo, with inhibitory effects on EMT and stemness of PAAD cells. More interestingly, Rg3-treated PAAD cell-derived exosomes suppressed the tube-forming ability of HUVEC and PAAD cells, with a decrease in stemness-related protein expression, indicating that Rg3 inhibited both angiogenesis and VM processes. Subsequently, we found that Rg3 induced the up-regulation of miR-204 in PAAD cell-derived exosomes, and miR-204 alone inhibited tube and sphere formation abilities of PAAD cells like exosomes. Specifically, miR-204 down-regulated DVL3 expression, which was involved in regulating cancer cell stemness, and ultimately affected VM. The in vivo experiments further indicated that Rg3-treated SW-1990 cell-derived exosome-inhibited tumor growth, VM formation, and stemness-related protein expression can be abrogated by DVL3 overexpression. CONCLUSION: Ginsenoside Rg3 increased the PAAD cell-derived exosomal miR-204 levels, which subsequently inhibited its target genes DVL3 expression in the receptor PAAD cells, and the down-regulated DVL3 broke stemness maintenance, ultimately suppressing VM formation of PAAD. Our findings revealed a novel mechanism by which Rg3 exerted its anti-tumor activity in PAAD via inhibiting VM, and provided a promising strategy to make up for the deficiency of anti-angiogenesis therapy in cancer.


Assuntos
Adenocarcinoma , Ginsenosídeos , MicroRNAs , Neoplasias Pancreáticas , Intervenção Coronária Percutânea , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células , Neovascularização Patológica/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas Desgrenhadas/genética
11.
BMJ Open Ophthalmol ; 9(1)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341189

RESUMO

Age-related macular degeneration is a major cause of blindness, and the development of anti-vascular endothelial growth factor (VEGF) intravitreal treatments has revolutionised the management of the disease. At the same time, new challenges and unmet needs arose due to the limitations of the current therapeutic options. Neovascularisation development during the course of the disease has a complex pathogenetic mechanism, and several biomarkers and their association with treatment outcomes have been investigated. We reviewed the relevant literature about neovascularisation development and biomarkers related to response to treatment. Improving our knowledge on the field can improve patient outcomes and offer personalised care.


Assuntos
Inibidores da Angiogênese , Degeneração Macular , Humanos , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Degeneração Macular/diagnóstico
12.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338342

RESUMO

The aim of this study was to investigate the anti-angiogenic effects of the hexane fraction of Adenophora triphylla var. japonica root extract (HAT) and its influence on the development of erlotinib resistance in human lung cancer cells. HAT significantly reduced the migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). The phosphorylation levels of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream molecules were decreased via HAT, indicating its anti-angiogenic potential in endothelial cells (ECs). A docking analysis demonstrated that ß-sitosterol and lupeol, representative components of HAT, exhibit a high affinity for binding to VEGFR2. In addition, conditioned media from HAT-pretreated H1299 human lung cancer cells attenuated cancer-cell-induced chemotaxis of HUVECs, which was attributed to the decreased expression of angiogenic and chemotactic factors in H1299 cells. Interestingly, co-culture of erlotinib-sensitive PC9 human lung cancer cells with HUVECs induced erlotinib resistance in PC9 cells. However, co-culture with HAT-pretreated HUVECs partially restored the sensitivity of PC9 cells to erlotinib. HAT inhibited the development of erlotinib resistance by attenuating hepatocyte growth factor (HGF) production by ECs. Taken together, our results demonstrate that HAT exerts its anticancer effects by regulating the crosstalk between ECs and lung cancer cells.


Assuntos
Campanulaceae , Neoplasias Pulmonares , Humanos , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hexanos/farmacologia , 60489 , Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana , Neovascularização Patológica/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Movimento Celular , Proliferação de Células
13.
Angiogenesis ; 27(2): 245-272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403816

RESUMO

Angiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/ß-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/ß-catenin pathway activity, as activating the pathway induced, while ß-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.


Assuntos
Carbolinas , Pirimidinas , Fator A de Crescimento do Endotélio Vascular , beta Catenina , Camundongos , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Proliferação de Células , 60489 , Inibidores da Angiogênese/farmacologia , Movimento Celular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt , Neovascularização Patológica/tratamento farmacológico , Inflamação , Células Endoteliais da Veia Umbilical Humana/metabolismo
14.
J Control Release ; 366: 505-518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184233

RESUMO

Vascular endothelial growth factor (VEGF) not only serves as an autocrine survival factor for tumor cells themselves, but also stimulates angiogenesis by paracrine pathway. Strategies targeting VEGF holds tremendous potential for tumor therapy, however, agents targeting VEGF are limited by intolerable side effects, together with incomplete and temporary blocking of VEGF, resulting in unsatisfactory and unsustained therapeutic outcomes. Herein, hierarchical-unlocking virus-esque NanoCRISPR (HUNGER) is constructed for complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF, thereby eliciting notable tumor inhibition and antiangiogenesis. After intravenous administration, HUNGER exhibits prolonged blood circulation and hyaluronic acid-CD44 mediated tumor-targeting capability. Subsequently, when matrix metalloproteinase-2 is overexpressed in the tumor microenvironment, the PEG layer will be removed. The cell-penetrating peptide R8 endows HUNGER deep tumor penetration and specific cellular uptake. Upon cellular internalization, HUNGER undergoes hyaluronidase-triggered deshielding in lysosome, lysosomal escape is realized swiftly, and then the loaded CRISPR/Cas9 plasmid (>8 kb) is transported to nucleus efficiently. Consequentially, complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF ensures inhibition of angiogenesis and tumor growth with inappreciable toxicity. Overall, this work opens a brand-new avenue for anti-VEGF therapy and presents a feasible strategy for in vivo delivery of CRISPR/Cas9 system.


Assuntos
Neoplasias , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Transporte Biológico , Imunoterapia , Metaloproteinase 2 da Matriz , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Neovascularização Patológica/tratamento farmacológico
15.
Theranostics ; 14(1): 436-450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164156

RESUMO

Rationale: Vitamin D (VD) has been suggested to have antitumor effects, however, research on the role of its transporter vitamin D-binding protein (VDBP, gene name as GC) in tumors is limited. In this study, we demonstrated the mechanism underlying the inhibition of vasculogenic mimicry (VM) by VDBP in hepatocellular carcinoma (HCC) and proposed an anti-tumor strategy of combining anti-PD-1 therapy with VD. Methods: Three-dimensional cell culture models and mice with hepatocyte-specific GC deletion were utilized to study the correlation between VDBP expression and VM. A patient-derived tumor xenograft (PDX) model was further applied to validate the therapeutic efficacy of VD in combination with an anti-PD-1 drug. Results: The study revealed that VDBP expression is negatively correlated with VM in HCC patients and elevated VDBP expression is associated with a favorable prognosis. The mechanism studies suggested VDBP hindered the binding of Twist1 on the promoter of VE-cadherin by interacting with its helix-loop-helix DNA binding domain, ultimately leading to the inhibition of VM. Furthermore, VD facilitated the translocation of the vitamin D receptor (VDR) into the nucleus where VDR interacts with Yin Yang 1 (YY1), leading to the transcriptional activation of VDBP. We further demonstrated that the combination of VD and anti-PD-1 led to an improvement in the anti-tumor efficacy of an anti-PD-1 drug. Conclusion: Collectively, we identified VDBP as an important prognostic biomarker in HCC patients and uncovered it as a therapeutic target for enhancing the efficacy of immune therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Proteína de Ligação a Vitamina D/uso terapêutico , Neoplasias Hepáticas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral
16.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255995

RESUMO

Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neovascularização Patológica/tratamento farmacológico , Membrana Basal , Encéfalo , Divisão Celular , Neoplasias/tratamento farmacológico
17.
J Pharm Pharmacol ; 76(4): 426-434, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290061

RESUMO

OBJECTIVES: Sanshimao (SSM) is a traditional Chinese medicine formula for advanced hepatocellular carcinoma (HCC). This study was designed to investigate the effect of SSM on HCC-induced angiogenesis and to explore the potential mechanism. METHODS: The endothelial cells were cultured with HCC cells conditioned medium in the 1% oxygen atmosphere to imitate tumor hypoxia microenvironment. EA.hy926 cells migration and tubulogenesis were detected by tube formation and scratch-wound assay. The protein microarray was employed to explore SSM-targeted proteins in Huh7 cells. We also established an animal model to observe the effects of SSM on angiogenesis in vivo. RESULTS: The data indicated that SSM reduced HCC-induced migration and tube formation of EA.hy926 cells at low dose under hypoxic conditions. These effects might be partly owing to suppression of HIF-1α-induced vascular endothelial growth factorα expression in Huh7 cells. Moreover, this inhibition was in an MKK6/P38-dependent way. Besides, Huh7 subcutaneous tumor models in nude mice further demonstrated the inhibition of SSM on tumor weight might be exerted partly by reduction of angiogenesis via blocking MKK6/P38 signaling pathways. CONCLUSION: SSM inhibits HCC-induced pro-angiogenesis under hypoxic conditions via suppression of MKK6/P38 signaling pathways, which is favorable for HCC tumor growth.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Neovascularização Patológica , Animais , Camundongos , 60489 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Transdução de Sinais , Microambiente Tumoral , Medicamentos de Ervas Chinesas/farmacologia , MAP Quinase Quinase 6/efeitos dos fármacos , MAP Quinase Quinase 6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Pathol Res Pract ; 254: 155130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277750

RESUMO

BACKGROUND: Oral cancer represents a substantial global health burden, often associate with hypoxia-induced angiogenesis as a critical factor in its progression. Curcumin, a naturally occurring bioactive compounds, has gained increasing attention for its potential anticancer properties. OBJECTIVE: To assess the impact of curcumin on oral cancer, particularly its role in modulating HIF-1α-mediated angiogenesis in HSC-3 cells. METHODS: Our investigation involved multiple experimental approaches, including MTT assay, aerobic glycolysis by metabolic kit, cell cycle, and apoptosis assessment via flow cytometry. Furthermore, we employed molecular docking techniques to examine the interactions between curcumin and key angiogenesis related proteins, including HIF-1α, VEGF-B, MMP-3, and STAT3. RESULTS: Our results demonstrate that curcumin exerts significant effects on the cell survivability, cell cycle regulation, and apoptosis induction in oral cancer cells. These effects were particularly pronounced under the conditions of HIF-1α mediated angiogenesis. Computational binding analysis revealed strong binding interactions with curcumin and the selected proteins, implying a plausible mechanism through which curcumin may modulate the angiogenic pathways in oral cancer. CONCLUSION: Our research sheds light on the diverse effects of curcumin on oral cancer cells, emphasizing its potential as a promising therapeutic tool for addressing hypoxia-induced angiogenesis. However, further investigation is essential to comprehensively understand the molecular mechanisms underlying these effects in in vitro models. This deeper comprehension is crucial for translating these findings into clinical applications aimed at improving oral cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Curcumina , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , 60489 , Simulação de Acoplamento Molecular , Neoplasias Bucais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Linhagem Celular Tumoral
19.
Biomed Pharmacother ; 171: 116117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171243

RESUMO

Tumor angiogenesis is one of the typical hallmarks of tumor occurrence and development, and tumor neovascularization also exhibits distinct characteristics from normal blood vessels. As the number of cells and matrix inside the tumor increases, the biomechanical force is enhanced, specifically manifested as solid stress, fluid stress, stiffness, and topology. This mechanical microenvironment also provides shelter for tumors and intensifies angiogenesis, providing oxygen and nutritional support for tumor progression. During tumor development, the biomechanical microenvironment also emerges, which in turn feeds back to regulate the tumor progression, including tumor angiogenesis, and biochemical and biomechanical signals can regulate tumor angiogenesis. Blood vessels possess inherent sensitivity to mechanical stimuli, but compared to the extensive research on biochemical signal regulation, the study of the regulation of tumor neovascularization by biomechanical signals remains relatively scarce. Biomechanical forces can affect the phenotypic characteristics and mechanical signaling pathways of tumor blood vessels, directly regulating angiogenesis. Meanwhile, they can indirectly regulate tumor angiogenesis by causing an imbalance in angiogenesis signals and affecting stromal cell function. Understanding the regulatory mechanism of biomechanical forces in tumor angiogenesis is beneficial for better identifying and even taming the mechanical forces involved in angiogenesis, providing new therapeutic targets for tumor vascular normalization. Therefore, we summarized the composition of biomechanical forces and their direct or indirect regulation of tumor neovascularization. In addition, this review discussed the use of biomechanical forces in combination with anti-angiogenic therapies for the treatment of tumors, and biomechanical forces triggered delivery systems.


Assuntos
Neoplasias , Neovascularização Patológica , Humanos , Neovascularização Patológica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
20.
Chem Biol Interact ; 387: 110796, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951333

RESUMO

Angiogenesis is considered one of the hallmarks of cancer, assisting tumor progression and metastasis. The mesoionic compound, MI-D, can induce cell death and provoke cytoskeletal and metabolic changes in cancer cells. Using in vitro and in vivo models, this study aimed to evaluate the effects of MI-D on the viability of human endothelial cells (EC) and its ability to inhibit tumor-induced angiogenesis induced by tumoral cells. For in vitro analysis, colon carcinoma (HT29) and endothelial (EA.hy926) cells were used as the tumoral and angiogenesis models, respectively. To evaluate cytotoxicity, methylene blue viability stain and annexin-V/7AAD tests were performed with both cell types. For the angiogenesis experiments, scratch wound healing and capillary tube-like formation assays were performed with the EC. The in vivo tests were performed with the chorioallantoic membrane (HET-CAM) methodology, wherein gelatin sponge implants containing MI-D (5, 25, and 50 µM), HT29 cells, or both were grafted in the CAM. Our data showed that MI-D induced apoptosis in both endothelial and colon carcinoma cells, with a strong cytotoxic effect on the tumoral lineage. The drug inhibited the EC's migration and capillary-like structure formation in vitro. In the HET-CAM assays, MI-D reduced the number of blood vessels in the membrane when grafted alone and accompanied by tumor cells. In this study, MI-D interfered in important steps of angiogenesis, such as maintenance of endothelial cell viability, migration, formation of capillary-like structures, as well tumor-induced neovascularization, reinforcing the hypothesis that MI-D might act as an inhibitor of angiogenesis, and a potential antitumor agent.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Células Endoteliais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Movimento Celular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Antineoplásicos/uso terapêutico , Carcinoma/metabolismo , Células Endoteliais da Veia Umbilical Humana , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...